Hi quest ,  welcome  |  sign in  |  registered now  |  need help ?

Definition List

Flag Counter

Hot Tapping (Pressure Tapping) and Freezing A. Keith Escoe, in Piping and Pipelines Assessment Guide, 2006

Written By pipeline-engineer.com on Tuesday, January 26, 2021 | 10:00:00 PM

Test Pressure and Temperature Per the API RP 2201, conduct a hydrostatic test at a pressure at least equal to the operating pressure of the piping to be tapped, but not exceeding the present internal pressure by more than approximately 10% in order to avoid possible internal collapse of the pipe wall. If there exist conditions that could cause collapse of the pipe wall, the test pressure can be reduced. If a hydrostatic test is not practical, then a pneumatic test may be performed, using the common precautions. Note that header walls can collapse during testing if insufficient internal operating pressure or excessive external hydrostatic pressure is applied. This is especially true for large diameter piping and pipelines. The test pressure can be limited if necessary to prevent shell buckling because of differential external pressure between the outside and inside pipe wall being hot tapped. This is accomplished by either a reduction in the test pressure from that calculated using the applicable code rules or an increase in the pipe internal pressure. Shown in Figure 7-3 is a hot tap nozzle welded to pipe with external load (hydrostatic test pressure). It shows the two different configurations for the nozzle connection—a welded fitting or a saddle and a full encirclement sleeve. Shown in the weld configurations, the hydrostatic test pressure is contained within the confines of the inside of the nozzle wall. If the hydrostatic test water leaks through one of the welds, then that would be a hydrostatic test failure. A more graphic detail of the typical 90° nozzle connection is shown in Figure 7-4.
Figure 7-3. Hot tap nozzle welded to a pipe with external load on the pipe wall during hydrostatic test.
Figure 7-4. Typical 90° nozzle connection. The maximum pressure required to buckle the shell wall consists of a curved plate clamped at the edges. This situation is for a saddle or reinforcing pad assembly that does not encompass the entire circumference of the pipe. This problem of elastic stability was first solved by E. I. Nicolai in St. Petersburg in 1918, cited in Timoshenko and Gere, Theory of Elastic Stability [Reference 3]. The buckling pressure is in the following form:
This particular case is in Roark's 7th edition, Table 15.2 Case 21 [Reference 4]. Curved panels under uniform loading were a topic of great interest in Russia, where it snows heavily during the blizzard winters. As the story goes, whenever snow loads would build up, a curved roof sometimes would collapse. Consequently, interest to solve the problem stimulated a formal analytical solution, shown above. As seen in Figure 7-3, the hot tap connection can be either a saddle or full encirclement sleeve. The latter type is shown in more detail in Figure 7-5.
Figure 7-5. A full encirclement sleeve for hot tap installation. Courtesy of ExxonMobil, Inc. The hydrostatic test pressure is assessed as in the ASME Section VIII Division 1 code for external pressure on a cylindrical shell. The assessment uses the A and B values in the ASME Section II Part D curves for the material considered. Before any component is welded, be it a saddle, reinforcing pad, or a full encirclement sleeve, an NDE such as UT needs to be performed to certify that the remaining wall thickness on the pipe is substantial enough to have hot work performed. If the pipe has an LTA (see Chapter 3) and a sleeve is to be welded on, the pipe is no longer of uniform thickness, and the assessment in the ASME Section VIII Division 1 for external pressure is not valid. For a pipe with an LTA, a buckling assessment using finite element is required to find the critical buckling pressure. Normally, it is accepted practice not to perform hot taps close to corroded regions to avoid this situation; however, this event cannot always be avoided. Typical nonperpendicular nozzle hot tap connections used for pipe sizes 3 in. NPS and smaller are shown in Figure 7-6.
Figure 7-6. Typical hot tap installation for a nonperpendicular installation (e.g., an elbow). Courtesy of ExxonMobil, Inc. To facilitate drilling and cutting, guide plates are required for nozzles—both flanged and threaded—when attached to elbows or when installed at angles other than in the perpendicular direction. Typical nonperpendicular nozzle hot tap connections for pipe sizes 4 in. NPS and larger are shown in Figure 7-7.
Figure 7-7. Typical nonperpendicular nozzle hot tap connections for pipe sizes 4 in. NPS and larger. The angle beam shown is to allow the drill with the cutter to maintain a common line of drilling to ensure a proper connection. Courtesy of ExxonMobil, Inc. The guide angle sizes shown in Figure 7-7 are standard AISC (American Society of Steel Construction—see Chapter 6) structural shapes. If required to make angle surface perpendicular to the axis of the pilot drill, one leg of the angle may have to be trimmed. Guide angles are not installed for cutter or drill sizes less than 2 in. OD. These guide angles provide the means to drill straight into an elbow. Without them, a worker could drill at an angle resulting in an improper fit-up. Bolted-on fittings should be used in services where bolted-on fittings should be considered (e.g., caustic or piping requiring PWHT). When heat is applied to caustic, it becomes much more corrosive. Caustic becomes highly corrosive at high temperatures and can either cause severe corrosion damage or even eat through the pipe. Also, bolted-on fittings are used where the material is non-weldable (e.g., concrete) or difficult to weld (e.g., cast iron). The use of bolted-on fittings is limited by design to piping normally less than 12 in. (400 mm) in diameter. These mechanical clamps are normally fabricated of carbon steel and use a rubber compression joint to seal against the pressure. This type of hot tap fitting is shown in Figure 7-8. Various other connections acceptable for hot taps are shown in Figure 7-9.
Figure 7-8. Typical bolt-on hot tap fitting. Courtesy of ExxonMobil, Inc.
Figure 7-9. Various connections used for welded-on hot taps. Hot tap connections are normally summarized on a computer spread sheet, as shown in Figure 7-10. The Type 1 is the full encirclement saddle, which is permitted in all cases. This type is preferred if vibration is possible. The Type 2, the full encirclement sleeve, is required when vibration will occur and is used when a Type 1 connection is not available; otherwise, it is permitted in all cases. The Type 3 is the split tee, which is used for hot tap installation with a standard flange or lock-o-ring flange. This type is more expensive than the Type 1 or 2. The Type 4 is the welding outlet. It is permitted only when supplied by a reputable manufacturer. The Type 5 is the circular reinforcing pad and is permitted in all cases except when there are large amounts of vibration. The full encirclement sleeve is preferred when the branch is greater than 70% of the header size. The Type 6 connection is the saddle, which has the same applications as the Type 5 except that it is preferred for high levels of vibration services with small branch connections. The Type 7 is the contour insert, which has the same application as the Type 6 connection except that it is preferred and recommended with 100% radiography. A typical hot tap calculation is shown in spreadsheet form in Figure 7-10.
Figure 7-10. Typical hot tap calculation on a spreadsheet. Summary Procedures The engineer of the proponent organization fills out the spreadsheet, and it is checked by a unit engineer as well as inspection and operations personnel before issued to the contractor. The steps required for implementing a hot tap and stoppling vary with each company. The reader will notice that there are three solutions to the hydro test of the hot tap connection. If a saddle or reinforcing pad is utilized, the Nicolai solution of Eq. 7-1 (Roark's 7th edition, Table 15.2 Case 21 [Reference 4]) is applied. If the hot tap connection is a full encirclement sleeve, then the ASME Section VIII Division 1 rules for external pressure are applied. However, as mentioned previously, if the full encirclement sleeve covers an LTA, then a buckling assessment should be performed. This assessment can be done with a linear elastic finite element model for the differential pressure between the pipe internal pressure and the applied external test pressure. Some companies avoid the finite element assessment by not allowing a hot tap or stopple close to an LTA; however, this event cannot always be avoided. During welding the inner temperature of the pipe wall can rise to 19,000°F (10,400°C). This temperature can vary, depending on the wall thickness of the pipe, welding amperage, and welding technique. Temperatures of this magnitude can result in metallurgical changes in steels. Also the contents inside the pipe can be affected by such temperatures. Materials that become unstable with heat should not be subject to hot tapping. Oxidizers (e.g., oxygen and chlorine) can cause explosions with mixtures of air and fuel. Hydrogen, hydrogen mixtures, and caustic can result in cracking of the pipe in the weld metal or heat-affected zone. Hot tapping on high purity ethylene can result in exposure of the chemical to high temperatures, and violent decomposition can occur. Tests have been performed that show that for clean systems, pressures as high as 1200 psig (8.0 MPag) can be tolerated without decomposition. However, experience indicates that pressures of the magnitude of 300 psig (2.0 MPag) are more reliable as a safe limit for operating equipment. Piping that contains pure acetylene should not be hot tapped. The limiting pressure for decomposition depends on the temperature of the acetylene. However, with temperatures experienced during welding, pressures as low as 15 psig can be sufficient for decomposition. Vinyl acetylene has been shown to decompose at 10 psig pressure at moderate temperature. Butadiene is normally more stable than ethylene; applying the same restrictions for ethylene to butadiene can avoid explosive decomposition. Butadiene in the presence of oxygen reacts to form a peroxide polymer that can decompose explosively. One must prevent the forming of butadiene peroxide, even in small quantities, because of its highly unstable nature. During hot tapping, the cutting machine must be purged of all air to prevent the formation of butadiene peroxide in the hot tapping equipment. Any line that contains butadiene peroxide should not be hot tapped. When hot tapping piping contains hydrogen, hydrogen attack can occur. Hydrogen attack is a function of the hydrogen partial pressure, temperature, time, and material of construction. It can take the form of internal decarburization and fissuring, hydrogen blistering, and dissolved hydrogen leading to embrittlement. Allowable hydrogen partial pressures are based on the API RP 941, Steels for Hydrogen Service at Elevated Temperatures and Pressures in Petroleum Refineries and Petrochemical Plants [Reference 2]. For hot tapping, the piping should be operating at at least 100 psi (0.7 MPag) below the appropriate Nelson curve. Typically, low hydrogen welding electrodes are used for hydrogen service. The area hot tapped should be inspected by magnetic particle or liquid penetrant approximately 2 days after welding. To help distribute the residual stress in the weld connection, full encirclement fittings are recommended for hydrogen service. Shown in Table 7-1 are typical problematic processes for hot tapping. This table is a general guideline for hot tapping piping where one should use caution. Table 7-1. Hot Tapping Selected Process Fluids
10:00:00 PM | 0 comments

Joe Biden revoked the permit needed to build the Keystone XL oil pipeline (KXL)

Written By pipeline-engineer.com on Saturday, January 23, 2021 | 10:11:00 PM

CALGARY, Alberta (Reuters) — U.S. President Joe Biden on Wednesday formally revoked the permit needed to build the Keystone XL oil pipeline (KXL), dashing Ottawa's hopes of salvaging the $8 billion project that the struggling Canadian crude sector has long supported. The move represents another set-back for the beleaguered Canadian energy industry, kills thousands of jobs and marks an early bump in Biden's relationship with Canada, a key trading partner. Biden had long promised to scrap the permit. Kirsten Hillman, Canada's ambassador to Washington, told CTV that Ottawa was "very disappointed." Foreign Minister Marc Garneau, speaking minutes earlier, took a more muted tone, telling CTV that Canada respected and understood the decision. Keystone XL, owned by TC Energy Corp, is already under construction in Canada, and would carry 830,000 barrels per day of Alberta oil sands crude to Nebraska. Opposition from U.S. landowners, Native American tribes and environmentalists has delayed the project for the past 12 years. Former Republican President Donald Trump revived the project, but it still faced ongoing legal challenges. TC Energy, in a statement issued before the revocation, expressed disappointment with a move it said would overturn a regulatory process that had lasted more than a decade. The Calgary-based company said it will suspend construction and warned there could be a "substantive" predominantly non-cash, after-tax charge to earnings in the first quarter of 2021. TC Energy said the decision would lead to layoffs for thousands of unionized construction workers. TC Energy stock closed down 1.2% at C$55.92 in Toronto while the benchmark Canadian share index edged up 0.3% "Killing 10,000 jobs and taking $2.2 billion in payroll out of workers' pockets is not what Americans need or want right now," Association of Oil Pipe Lines Chief Executive Andy Black said. Keystone XL, owned by TC Energy Corp, is already under construction in Canada. Keystone XL, owned by TC Energy Corp, is already under construction in Canada. Canada, the world's fourth-largest crude producer, ships most of that output to U.S. refineries. In 2019, the U.S. brought in 3.8 million bpd from Canada, more than half its daily imports of 6.8 million bpd. Canadian producers, who have struggled for years from low prices partly related to sometimes-congested pipelines, have long supported KXL. Producer Suncor Energy said it backed expanding market access to the U.S. through pipelines like KXL, which would provide responsibly sourced oil to U.S. refineries for the benefit of U.S. consumers. But a Canada Energy Regulator report in November report said western Canadian crude exports are expected to remain below total pipeline capacity over the next 30 years if KXL and two other projects proceed, prompting environmental groups to question the need for all three. Canadian Prime Minister Justin Trudeau said on Tuesday that Canada was pressing people at the highest levels of Biden's incoming administration to reconsider canceling the project. Canadian Environment Minister Jonathan Wilkinson on Tuesday expressed optimism the two countries could work cooperatively in areas such as clean electricity, decarbonization of industry, transportation and methane emissions. Alberta Premier Jason Kenney threatened legal action on Monday if Keystone XL was scrapped.
10:11:00 PM | 0 comments

Pipeline Challenges Limits of Leak-Tight Pipeline Isolation Capabilities

Written By pipeline-engineer.com on Saturday, October 3, 2020 | 12:48:00 AM

(PGJ) Maintaining the integrity of piping and pipeline infrastructure continues to be of vital importance to owners and operators, particularly as a higher number of pipelines move into their fourth and fifth decade of operation, far beyond their original design life.
 

Despite this, and due to continued integrity management programs and regular inspection, these pipelines continue to operate safely. As part of an integrity management program, pipeline and piping systems require inspection, maintenance, and repair to ensure efficient and safe operation. 
Any interruption to the product flow can be costly for the operator and to the end user in terms of loss of production and potential application of penalty clauses for loss of supply.  
Loss of integrity or malfunction generating a leak to the atmosphere adds major safety consequences and environmental hazards to the loss of production and inventory costs. There are also downstream consequences of prolonged loss of supply to the clients and end users. 
To meet ever-increasing safety standards as the industry strives to continually reduce incidents, the repair and maintenance of aging process pipework and pipeline infrastructure has become increasingly important.  

STATS was contracted to provide leak-tight pipeline isolation services on three pressurized steam lines as part of a larger restoration project at a major refinery in the Middle East. 
Unlike the first project, this scope presented many challenges that would push the limits of current isolation technology and require further research and development to provide an engineered solution capable of isolating each of the high-temperature steam lines. 
The purpose of the restoration project was to rebuild sections of the refinery following a fire that caused damage and limited refinery production capacity. The steam lines to be isolated included a 30-by-30-inch (762-by-762-mm), 24-by-6-inch (610-by-152-mm) and 36-by-10-inch (914-by-254-mm) with temperature ranging from 374° F to 718° F (190° C to 381° C) and pressures from 58 psi to 609 psi (4 bar to 42 bar).
 

Because the pipework was not piggable, the only viable option was to deploy the isolation plugs at locations through a branched fitting (either by welded split tee or mechanical clamp). The clamps with equal-sized branches allowed hot tapping to be conducted to provide access for STATS branch-installed self-energized plugging (BISEP) tool to be deployed into the live steam lines.  


An additional challenge to the project was that the steam pipework was situated 66 feet (20 meters) off the ground, which required scaffolding to be erected at each location. However, space was limited due to surrounding pipework, which added further difficulties. A detailed risk assessment was conducted for each of the steam lines and isolation locations.  

  


The specialist rubber seal was selected for the project due to its performance during testing. Prior to the live deployment, final tests were conducted at the refinery using a 10-inch steam loop. This provided final confirmation that the rubber compound would perform as required at the temperature, pressure and flow conditions of the live pipelines. 


STATS isolation methodology for the high-temperature steam lines was to use the U-bends in the system as the location for the isolation. 

This allowed deployment of a modified BISEP with a single high-temperature seal into the steam line to create a heat barrier. 

The seals on the BISEP were each independently tested, and the annulus void between the seals was vented to create a leak-tight double block and bleed isolation. With the fully tested and constantly monitored BISEP isolating the steam line, an isolation certificate was issued to the client allowing breaking of containment activities to safely take place.  


The client had requested that the split tee fittings were removed from the pipeline after the workscope was completed, so STATS methodology involved using the company’s inline isolation tool to enable the fittings to be cut and removed from the pipeline.

12:48:00 AM | 0 comments

Lagos Explosion: BBC Africa Eye uncovers evidence that contradicts NNPC’s claims

Written By pipeline-engineer.com on Tuesday, September 22, 2020 | 9:09:00 AM

New evidence obtained by BBC Africa Eye contradicts the official explanation for the cause of an explosion which killed 23 people and destroyed a girls boarding school in Lagos, Nigeria, earlier in the year.The blast occurred in Soba, a residential neighbourhood of Lagos, on March 15th, 2020, at about 8:56 am.

In its reaction to the incident at the time, the Nigerian National Petroleum Corporation (NNPC) claimed the explosion occurred as a result of a truck that hit gas cylinders near one of its petroleum pipelines.



But new evidence indicates that the NNPC explanation for the cause of the blast, that decimated over 100,000 square metres of Lagos, is incorrect.

A new video evidence filmed at the explosion site, five minutes before the blast, shows a catastrophic leak of vaporised liquid at the exact location where the NNPC high-pressure petroleum pipeline runs beneath the ground through that area.



The BBC found there was no gas processing plant at the explosion’s epicentre.

Moreover, analysis of gas cylinders found at the site after the blast indicates they could not have been at the centre of the explosion when it happened.



Three specialist engineers – including experts in LPG gas safety, petroleum pipeline safety, and explosions analysis – who have examined video footage all confirm the huge leak of vaporised liquid could not have come from gas cylinders.



The BBC spoke with eyewitnesses who corroborated this claim. None of them mentioned gas cylinders or saw a collision, but four of them independently said the leak was coming out of the ground beside the heavily laden truck.





9:09:00 AM | 0 comments

API calls for pipeline permit reforms following shutdowns

Written By pipeline-engineer.com on Saturday, July 11, 2020 | 12:24:00 AM


WASHINGTON – The American Petroleum Institute released the following statement from President and CEO Mike Sommers in response to the cancellation of the Atlantic Coast Pipeline and a court ruling to shut down the Dakota Access Pipeline. "Between the Atlantic Coast Pipeline cancellation and now the ruling to shut down the Dakota Access Pipeline – we are deeply troubled by these setbacks for U.S. energy leadership. Our nation’s outdated and convoluted permitting rules are opening the door for a barrage of baseless, activist-led litigation, undermining American energy progress and denying local communities the environmental, employment and economic benefits modern pipelines provide. The need to reform our broken permitting system has never been more urgent." API represents all segments of America’s oil and natural gas industry. Its more than 600 members produce, process, and distribute most of the nation’s energy. The industry supports 10.9 million U.S. jobs and is backed by a growing grassroots movement of millions of Americans. API was formed in 1919 as a standards-setting organization. In its first 100 years, API has developed more than 700 standards to enhance operational and environmental safety, efficiency and sustainability.
12:24:00 AM | 0 comments

Ask Wikipedia

Search results

Subscribe to Pipeline-Engineer.com

Adsspace 140x140

Site Links

Blog Archives

Total Pageviews

Recommended Books

Recommended Books